

Implementing receptor theory in PK-PD modeling

Meindert Danhof & Bart Ploeger

PAGE, Marseille, 19 June 2008

Leiden/Amsterdam Center for Drug Research

Leiden University/Vrije Universiteit Amsterdam

Leiden Experts on Advanced Pharmacokinetics & Pharmacodynamics

Mechanism-based PK-PD modeling current status and future directions

Danhof M. et al., (2007) Ann. Rev. Pharmacol. Toxicol. 47: 357-400.

Mechanism-based PK-PD modeling a pharmacologist's view

Describe processes on the causal chain between (plasma) concentration and effect

- 1. Target site distribution
- 2. Target binding and activation
- 3. Transduction processes
- 4. Pharmacodynamic interactions
- 5. Homeostatic feedback

"In Vivo" Transduction

Danhof M. et al., (2007) Ann. Rev. Pharmacol. Toxicol. <u>47</u>: 357-400.

Implementing receptor theory in PK-PD modeling

Concentration-effect relationship

Concentration-effect relationships can differ between tissues, species and individuals

Receptor theory for prediction of concentration-effect relationships

- *In vivo* concentration-effect relationships
- Tissue selectivity of drug effects
- Interspecies differences in concentration-effect relationships
- Tolerance and sensitization
- Intra- and inter-individual variability

Receptor function as a determinant of drug effect

Receptor theory for prediction of concentration-effect relationships

Identification of the receptor model application to GABA_A receptor agonists

- Simultaneous analysis of the concentration-effect curves of flunitrazepam, midazolam, oxazepam and clobazam
- Assumption of a single and 'unique' transducer function (non-parametric; continuously increasing function)
- Description of the receptor activation process on basis of a <u>hyperbolic function</u>
- 'Comparative' method for estimation of the drugspecific parameters

Midazolam: plasma concentrations and EEG effect in individual rats

From: Mandema et al., Br. J. Pharmacol. 102: 663-668 (1991)

EEG effect: benzodiazepines differ in potency and intrinsic activity

From: Mandema et al., J. Pharmacol. Exp. Ther. 257: 472-478 (1991)

Non-linear transducer function with no saturation at high stimulus intensities

From: Tuk et al., J. Pharmacol. Exp. Ther. 289: 1067-1074 (1999)

Neurosteroids and benzodiazepines share the same transducer function

EEG effects of alphaxalone and midazolam are quantitatively and qualitatively different

From: Visser et al., J. Pharmacol. Exp. Ther. 302: 1158-1167 (2002)

A parabolic function describes the stimulusresponse relationship of alphaxalone

From: Visser et al., J. Pharmacol. Exp. Ther. 302: 1158-1167 (2002)

Mechanism-Based PK-PD Model for Neurosteroids and Benzodiazepines

Model predicts monophasic concentration effect relationships for partial agonists

Benzodiazepines are partial agonists at the GABA_A receptor in vivo

From: Visser et al., J. Pharmacol. Exp. Ther. 304: 88-101 (2003)

Mechanism-based PK-PD model allows prediction of potency and intrinsic efficacy

From: Visser et al., J. Pharmacol. Exp. Ther. 304: 88-101 (2003)

Application of receptor theory in PK-PD modeling is generally feasible

- A₁ adenosine receptor agonists
- Synthetic μ opioid receptor agonists
- 5-HT_{1A} serotonin receptor agonists
- GABA_A receptor agonists
- Beta receptor antagonists
- hERG channel ligands

Application of receptor theory in PK-PD modeling challenges

- Kinetics of receptor association and dissociation
- Modeling of "constitutive activity" and "inverse agonism"
- Modeling of "allosteric modulation"
- Modeling of the role of "receptor subunit composition"
 - Interspecies extrapolation
 - Intra- and inter-individual variation

Implementing receptor theory in PK-PD modeling

Kinetics of drug action

Kinetics of drug-action: receptor kinetics and transducer function

How to distinguish receptor kinetics from the transducer function?

- Two-stage approach
 - Estimate the receptor kinetics independently
 - In vitro receptor binding experiment
 - Measuring the concentration in the biophase
 - Fix receptor kinetics and estimate transducer function
- Simultaneous approach
 - Collect detailed data on pharmacology
 - Different doses and/or infusion scheme's
 - Combine data from compounds acting on the same system
 - Full and partial agonist, agonists and antagonists, etc.

Estimating receptor kinetics in vitro using competition with a tracer

Estimating receptor kinetics in vitro experimental approach

Estimating receptor kinetics in vitro model structure

Stuctural model:

CL=concentration ligand; CD=concentration drug Assumption: CL and CD in excess

DADT(1)= $k_{on}L^*A(2)^*L-A(1)^*k_{off}L$ DADT(2)=- $(k_{on}L^*CL+k_{on}D^*CD)^*A(2)+A(1)^*k_{off}L+A(3)^*k_{off}D$ DADT(3)= $k_{on}D^*A(2)^*CD-A(3)^*k_{off}D$

; RL ; free R ; RD

Association:IPRED= A(1)Dissociation:IPRED= A(3)Equilibrium:IPRED= B_{max} *CL/(K_dL+CL)

Stochastic model:

Between experiment variability on B_{max} Proportional residual error

Estimating receptor kinetics in vitro optimal design

- All rate constants can be identified using <u>equilibrium and competitive binding</u> <u>experiments</u>
- Repeat competitive binding experiments for at <u>least 3 drug concentrations</u>
 - For the simulated compounds <u>at least 10 measurements</u> in the first hour are required

Estimating receptor kinetics in vitro application to a slow-offset drug

Parameter estimates

Parameter	equilibrium	equilibrium
	+	+
	competitive	competitive
	binding exp.	binding
		+
		association exp.
k _{offT} (1/min)	0.175	0.159
KdT (pM)	1450	1450
k _{off} drug	0.000569	0.000569
Kd drug (pM)	51.3	51.3

Estimating receptor kinetics in vivo using biophase concentration data

Estimating receptor kinetics of flumazenil in rat brain in vivo

LC Liefaard et al. Mol. Imaging Biol. 2005;7(6):411-421

Pharmacokinetic model for estimation of flumazenil receptor kinetics in vivo

LC Liefaard et al. Mol. Imaging Biol. 2005;7(6):411-421

Pharmacokinetic model for estimation of flumazenil receptor kinetics in vivo

LC Liefaard et al. Mol. Imaging Biol. 2005;7(6):411-421

Effect of amygdala kindling on blood-brain transport and receptor kinetics

LC Liefaard et al. Epilepsia 2008; accepted

Simultaneous estimation of receptor kinetics and transducer function: opioids

- Natural and (semi-)synthetic opioids are effective analgesics
- Potentially life-threatening respiratory depression is a major concern
- Design of novel opioids with optimized efficacysafety
 - Partial agonism as the basis for improved selectivity of action

Whole body plethysmography for monitoring of respiratory depression in rats

PK-PD correlation of semi-synthetic opioids mechanisms of hysteresis

Yassen et al., (2006) J. Pharmacol. Exp. Ther. <u>319</u>: 682-692.

Modeling of hysteresis in the effects of fentanyl and buprenorphine

(a) Biophase distribution model

$$\frac{dC_{e}}{dt} = k_{e0} \cdot (C_{p} - C_{e})$$

(b) Receptor association/dissociation model

$$\frac{dC_{\rho}R}{dt} = k_{on} * C_{\rho} * (1 - C_{\rho}R) - k_{off} * C_{\rho}R$$

(c) Combined model (a + b)

$$\frac{dC_eR}{dt} = k_{on} * C_e * (1 - C_eR) - k_{off} * C_eR$$

Yassen et al., (2006) J. Pharmacol. Exp. Ther. <u>319</u>: 682-692.

Modeling of the concentration-effect relations of fentanyl and buprenorphine

• Sigmoid E_{max} model (Hill equation) $E = 1 - \frac{\alpha \cdot C^n}{EC_{50}^n + C^n}$ • Receptor model with linear transduction $[C_e R] \qquad C_e$

$$\frac{\left[\mathbf{C}_{e}\mathbf{R}\right]}{\left[\mathbf{R}_{tot}\right]} = \frac{\mathbf{C}_{e}}{\mathbf{K}_{D} + \mathbf{C}_{e}}$$
$$\mathbf{E} = \mathbf{E}_{0} \cdot \left(\mathbf{1} - \mathbf{\alpha} \cdot \frac{\left[\mathbf{C}_{e}\mathbf{R}\right]}{\left[\mathbf{R}_{tot}\right]}\right)$$

Yassen et al., (2006) J. Pharmacol. Exp. Ther. 319: 682-692.

Time course of respiratory depression in rats following buprenorphine

Time (min)

Yassen et al., (2006) J. Pharmacol. Exp. Ther. <u>319</u>: 682-692.

Time course of respiratory depression in rats following fentanyl

Mechanism-based model for respiratory depression parameter estimates

	Fentanyl	Buprenorphine
k_{e0}, min ⁻¹	0.44 (-)	0.035 (79%)
Т_{½,keO}, min	1.6	19.9
k _{on} , ml.ng ⁻¹ .min ⁻¹	(> 100)	0.572 (-)
k_{off}, min⁻¹	(> 100)	0.090 (75%)
T _{½,koff} , min	(~ 0)	7.8
<i>K_D</i> , ng.ml ⁻¹	n.a.	0.16
EC₅₀, ng.ml ⁻¹	4.83 (84%)	n.a.
α	~1	0.48 (14%)
Hill factor	1.15 (-)	n.a.

Yassen et al., (2006) J. Pharmacol. Exp. Ther. <u>319</u>: 682-692.

Animal to human extrapolation of the pharmacodynamics of buprenorphine

- Simultaneous analysis of the effects in rats and humans
 - Respiratory depression
 - Antinociception
- No scaling of receptor association-dissociation kinetics (drug-specific properties)
- Allometric scaling of biophase distribution kinetics

$$\boldsymbol{k}_{e0} = \boldsymbol{a} \cdot \boldsymbol{W} \boldsymbol{T}^{b}$$

Yassen et al., (2007) Clin. Pharmacokin. 46:433-447.

Animal to human extrapolation of the pharmacodynamics of buprenorphine

individual predicted effect

Yassen et al., (2007) Clin. Pharmacokin. 46: 433-447.

Animal to human extrapolation of the pharmacodynamics of buprenorphine

	Antinociception	Respiratory depression
Drug specific parameters k_{on} , ml.ng ⁻¹ .min ⁻¹ k_{off} , min ⁻¹ K_D , nM α	0.015 (18.3) 0.053 (23.1) 7.5 n.e.	0.23 (15.8) 0.014 (27.7) 0.13 0.52
System specific parameter $k_{e0} = a.WT^{b}$ a, min^{-1} b	0.0303 (11.3) - 0.28 (9.6)	

Yassen et al., (2007) Clin. Pharmacokin. 46: 433-447.

Implementing receptor theory in PK-PD modeling

Concluding remarks

Implementing receptor theory in PK-PD modeling conclusions

- Estimation of receptor theory PK-PD models requires detailed information on pharmacology
- Data should allow to distinguish drug-specific and system-specific parameters
 - Combine in vitro and in vivo data
 - Evaluate different dose levels and/or infusion scheme's
 - Combine data from compounds acting on the same system